Electrochemical Dehumidification and Adsorption Thermal Energy Storage

August 2023

Yunho Hwang

Center for Environmental Energy Engineering Department of Mechanical Engineering University of Maryland College Park, MD 20742-3035

Energy Efficiency and Heat Pumps Consortium Copyright © 2023 Center for Environmental Energy Engineering

Introduction

- Using air conditioners and electric fans accounts for about 20% of all global electricity consumption (IEA).
- According to the U.S. Energy Information Administration (EIA), the electricity used for cooling was about 389 billion kilowatt-hours (kWh), or about 10% of total U.S. electricity consumption in 2021.
- Since the typical latent load is about 25% of the total building's cooling loads, dehumidification is responsible for 2.5% of total U.S. electricity consumption.
- When we can use innovative energy-efficient dehumidification technologies while using waste from the conventional cooling system, this cooling electricity consumption share can be decreased to 7% with a 30% energy savings in air conditioning.

Dehumidification

Energy Efficiency and Heat Pumps Consortium

Part 1: Electrochemical Dehumidification

- Y. Hwang*, L. Cao, J. Baker, C. Wang, R. Radermacher, Electrochemical Mass Transfer for Dehumidification and Gas Compression, 08/2023, DOI: 10.18462/iir.icr.2023.1150.
- L. Cao, J. Baker, Y. Hwang*, C. Wang, R. Radermacher, Development of An Electrochemical Membrane Dehumidifier, 08/2023, DOI: 10.18462/iir.icr.2023.0849.

Energy Efficiency and Heat Pumps Consortium

Introduction

• Comparison of Alkaline fuel cell (AEMFC) and electrochemical dehumidifier

Electrochemical Dehumidifier (ECD)

Energy Efficiency and Heat Pumps Consortium

MEA Fabrication

MEA (Membrane electrode assembly) Fabrication **Procedure:**

- The anode/cathode catalysts and ionomer binder were mixed to form ink solutions: catalyst/binder ratio, ultrasound.
- The ink solutions were painted on the membrane at a pre-determined amount: spray speed.
- Two gas diffusion layers were hot-pressed against each other with the catalyst-coated membrane to form the MEA: temperature and pressure.

Hydrophilic carbon cloth

channel

Titanium endplate

In-house MEA developed had:

- active membrane area of 5 cm²,
- cathode catalyst loading of 1 mgPt·cm⁻²,
- anode catalyst loading of 1 mgIrO₂·cm^{-2,}
- cathode catalyst was 60 wt.%Pt/40 wt.%C, and the anode catalyst was IrO₂.

CENTER FOR

ENVIRONMENTAL

TY ENGINEERING

ECD – Test Facility and Matrix

ECD Test Results (I)

Fig. 4: ECD process with a dry oxygen flow rate of 600 mL·min⁻¹, 0/2 V, RH 50/50%. (Test 1 and 2)

Actual water removal rate 0.69 g/day/cm² is 48% smaller than Faradic water removal rate 1.33 g/day/cm² when water is moved from high RH 59% to low RH 49% at 2 V (neutral diffusion).

Actual water removal rate 0.97 g/day/cm² is 33% smaller than Faradic water removal rate 1.45 g/day/cm² when water is moved from high RH 59% to low RH 49% at 3 V (neutral diffusion).

CENTER FOR

ENVIRONMENTAL

ENGINEERING

Fig. 5: ECD process with a dry oxygen flow rate of 600 mL·min⁻¹, 0/3 V, RH 50/50%. (Test 1 and 3) 8 Energy Efficiency and Heat Pumps Consortium

ECD Test Results (II)

Actual water removal rate 0.69 g/day/cm² is 48% smaller than Faradic water removal rate 1.33 g/day/cm² when water is moved from high RH 59% to low RH 49% at 2 V (neutral diffusion).

Fig. 4: ECD process with a dry oxygen flow rate of 600 mL⋅min⁻¹, 0/2 V, RH 50/50%. (Test 1 and 2)

Actual water removal rate 0.93 g/day/cm² is 34% smaller than Faradic water removal rate 1.40 g/day/cm² when oxygen flow rate is increased from 600 to 800 ml/min at 2 V (neutral diffusion).

Fig. 6: ECD process with a dry oxygen flow rate of 800 mL·min⁻¹, 0/2 V, RH 50/50%. (Test 1 and 4) 9 Energy Efficiency and Heat Pumps Consortium

ECD Test Results (III)

We analyzed the steady-state mass flux and power consumption and calculated the water removal rate and dehumidification efficiency. $\dot{M}_{removal} = \dot{m}_{air}(\omega_{cathode-in} - \omega_{cathode-out})$ Eq. (3)

 $\eta_{dehumidification} = \dot{m}_{removal} / (P \times A)$ Eq. (4)

where ω is humidity ratio, P is power input, and A is membrane area.

		Electric	Air inlet of Anode side				Air inlet of Cathode side				Water	Dehumidification		
No.	Field (V)	m_a (g/s)	V_a (mL/min)	T(°C)	HR (g/kg)	m_a (g/s)	V_a (mL/min)	T(°C)	HR (g/kg)	removal (g/day/m²)	efficiency (g/(J⋅m²))			
Work by Qi et al. (2017a)	1	3	0.0324	1502	21.5	14.7	0.0324	1502	21.5	10.7	4,020	0.0225		
	2	3	0.0111	516	21.5	14.7	0.0111	516	21.5	10.7	2,539	0.0195	2 2 1 1 2	
	3	3	0.0270	1251	22.6	13.2	0.0270	1251	22.9	12.6	2,610	0.0150		
	4	3	0.0111	516	22.6	13.2	0.0111	516	22.9	12.6	1,975	0.0155		
	5	3	0.0323	1497	21.9	11.3	0.0323	1497	22.3	11.6	2,116	0.0140		
	6	3	0.0111	516	21.9	11.3	0.0111	516	22.3	11.6	1,622	0.0150		2.8 times
Work by Qi et al. (2017b)	7	3	0.0163	755	19.5	13.4	0.0163	755	19.3	8.6	2,821	0.0190		higher dehum.
	8	3	0.0113	524	17.7	12.1	0.0113	524	17.4	8.0	2,328	0.0190		
	9	3	0.0054	250	16.6	11.3	0.0054	250	16.5	8.0	1,693	0.0155		efficiency
Current work	10	3	0.0143	600	20	7.2	0.0143	600	20	8.7	9,700	0.0417		
	11	2	0.0143	600	20	7.2	0.0143	600	20	8.7	6,900	0.0307		
	12	2	0.0190	800	20	7.2	0.0190	800	20	8.5	9,300	0.0619		COD
10	Energy Efficiency and Heat Pumps Consortium										NMENTAL			

System Modeling Approach

- Use experimental data and other modeling approaches to simulate:
 - EC dehumidifier
 - Sensible evaporator
- Combine system components
 using a numerical model

Conveniently solve different system configurations

Proposed modeling approach: combine system components using independent sub-models validated by experimental data.

Energy Efficiency and Heat Pumps Consortium

SSLC System Configurations

Conf. 6: 20%V, ECDin MixA

12

Energy Efficiency and Heat Pumps Consortium Copyright © 2023 Center for Environmental Energy Engineering

ECD Conclusions

- Dehumidification represents a significant portion of air conditioning energy requirements. Separate sensible and latent cooling using EC dehumidification may provide an energy-efficient thermal comfort solution for the hot and humid parts of the world.
- We developed several EC dehumidifiers, considering both proton exchange and anion exchange processes, and conducted experiments.
- The diffusion of the water vapor was significant in this application.
- Test results show that the dehumidification performance was increased from 0.69 g·day⁻¹·cm⁻² to 0.93 g·day⁻¹·cm⁻² when the dry oxygen flow rate is increased by the enhanced water mass transfer kinetics. The highest dehumidification efficiency achieved was 0.0619 g·J⁻¹·m⁻², which is 175% higher than the previous work.

Part 2: Adsorption Heat Pump

 Qian, S., K. Gluesenkamp, Y. Hwang*, R. Radermacher, H. Chun, Cyclic steady-state performance of adsorption chiller with low regeneration temperature zeolite, Energy, V. 60, pp. 517-516, 10/2013.

Energy Efficiency and Heat Pumps Consortium

Adsorption Heat Pump Schematic

Energy Efficiency and Heat Pumps Consortium

Experimental Facility

Nominal cooling capacity	3 kW					
Number of adsorber HXs	2					
Working pair (refrigerant/adsorbent)	water/zeolite					
Adsorber HX finned-volume dimensions (excludes headers and u-tubes)	600 x 264 x 102 mm					
Calculated adsorbent mass (per HX)	2.82 kg					
Adsorbent substrate area (per HX)	16.7 m ²					
Charge of HTF (per HX, excl. headers)	2.47 liter					

Energy Efficiency and Heat Pumps Consortium

Adsorbent Heat Exchanger

- (a) Prototype of adsorber HX
- (b) Close-up of adsorber HX-coated fins (1.8 mm fin spacing, 0.115 mm fin thickness, 0.25 mm zeolite coating thickness)

Energy Efficiency and Heat Pumps Consortium

Adsorption System w/ Heat Recovery

Energy Efficiency and Heat Pumps Consortium

Adsorption Time Impact

- Generally, the longer the adsorption time, more refrigerant can be adsorbed
- Too long adsorption time reduces the system capacity

Energy Efficiency and Heat Pumps Consortium

Heat Recovery Impact

- Heat transfer fluid (HTF) flows between the desorber and adsorber
- HTF in the desorber preheats the adsorber; HTF in the adsorber precools the desorber
- Heat recovery time is essential to the system COP and capacity

Energy Efficiency and Heat Pumps Consortium Copyright © 2023 Center for Environmental Energy Engineering

Experimental Data

In this study, a curve-fit performance model-based feedforward control strategy is proposed from the unique chiller performance characteristics.

CENTER FOR

GINEERING

Range of time constants tested

Energy Efficiency and Heat Pumps Consortium

Part 2 Conclusions

- Synthetic zeolite/water was implemented into a 3 kW adsorption chiller test facility driven by hot water at 70°C.
- The zeolite was coated onto two fin-and-tube heat exchangers, with heat recovery employed between the two.
- Cyclic steady-state parametric studies were conducted to evaluate the chiller's performance, resulting in a cooling COP ranging from 0.1 to 0.6.

Copyright © 2023 Center for Environmental Energy Engineering

22

Part 3: Short-Term Adsorption Heat Storage

- Li, G., S. Qian, H. Lee*, Y. Hwang, R. Radermacher, Experimental investigation of energy and exergy performance of short-term adsorption heat storage for residential application, Energy, V. 65, 1, pp. 675-691, 02/2014.
- Li, G., Y. Hwang*, R. Radermacher, Experimental investigation of energy and exergy performance of adsorption cold storage for space cooling application, investigation, Int. J. of Refrigeration, V. 44, pp. 23-35, 03/2014.

Energy Efficiency and Heat Pumps Consortium

TES Classification

H.A. Zondg, Seasonal and daily heat storage for heating and cooling of building, TU/e Mechanical Engineering, 2012.

Energy Efficiency and Heat Pumps Consortium

Sorption TES

- Relies on the physical or chemical attraction of the refrigeration gas on a liquid (absorption) or solid (adsorption) sorbent.
- Sorption TES has been suggested as a technique for a long-term storage period with limited heat loss.
- Higher energy density
- Stores energy as chemical potential, and potential does not degrade with time.

Adsorbent Heat Exchanger

(a) Prototype of adsorber HX
(b) Close-up of adsorber HX-coated fins (1.8 mm fin spacing, 0.115 mm fin thickness, 0.25 mm zeolite coating thickness)

Energy Efficiency and Heat Pumps Consortium

Heat Storage Test Facility

(a)

(a) Close-up of falling film distributor(b) Condenser/evaporator

(b)

Adsorption TES Powered by Engine Waste Heat

Energy Efficiency and Heat Pumps Consortium

Heat Storage Test Facility

Energy Efficiency and Heat Pumps Consortium

ENVIRONMENTAL

ENERGY ENGINEERING

Cold Storage Test Facility

Copyright © 2023 Center for Environmental Energy Engineering

ENERGY ENGINEERING

Charging and Discharging

Copyright © 2023 Center for Environmental Energy Engineering

Overall Storage Performance

Energy Efficiency and Heat Pumps Consortium

Common PCM TES Technologies

Fig. 10: Melting temperature and phase change enthalpy of existing PCMs [43]

Energy Efficiency and Heat Pumps Consortium

Part 3 Conclusions

- A fin-coated heat exchanger was adopted for a sorption bed to quicken the charging process.
- When the regeneration temperature was 70°C, ambient temperature was 30°C, HTF (heat transfer fluid) inlet temperature for the adsorption bed was 30°C, results show that the heat ESD (energy storage density) was approximately 805 kJ/kg with the energy efficiency approximately 96%.

Energy Efficiency and Heat Pumps Consortium

Contact: yhhwang@umd.edu

Energy Efficiency and Heat Pumps Consortium

Back Up

Energy Efficiency and Heat Pumps Consortium

Part 1: Desiccant Dehumidification

- 1. Tu, R., Y. Hwang*, Efficient configurations for desiccant wheel cooling systems using different heat sources for regeneration, Int. J. of Refrigeration, 86, 14-27, February 2018.
- Tu, R., Y. Hwang*, T. Cao, M. Hou, H. Xiao, Investigation of adsorption isotherms and rotational speeds for low-temperature regeneration of desiccant wheel systems, Int. J. of Refrigeration, 86, 495-509, February 2018.
- 3. Al-Alili, A., Y. Hwang*, R. Radermacher, Performance of a desiccant wheel cycle utilizing new zeolite material: Experimental investigation, Energy, V. 81, pp. 137-145, March 2015.
- 4. Cao, T., H. Lee, Y. Hwang*, R. Radermacher, Experimental Investigation on Thin Polymer Desiccant Wheel Performance, Int. J. of Refrigeration, V. 44, pp. 1-11, 08/2014.

Introduction

- Desiccant wheel (DW) is widely used in the advanced cooling system and dehumidification process.
- The current standard available for DW testing is ANSI/ASHRAE Standard 139-2007 "Method of Testing for Rating Desiccant Dehumidifiers Utilizing Heat for the Regeneration Process".
- Most experimental studies were conducted with silica gel at high regeneration temperatures.
- Studies on polymer desiccant material are limited.
- Studies on DWs with thicknesses below 100 mm are rare.

Introduction of Components

Desiccant wheel (DW)

Energy Efficiency and Heat Pumps Consortium

Polymer Desiccant

Fig. 1 - SEM picture of the super desiccant polymer coating.

Fig. 5 − Isotherms of water vapor on silica gel (∘, 50 °C, (Xia et al., 2008)), lithium chloride-silica gel composite adsorbent (\Box , 50 °C, (Gong et al., 2010)), type A silica gel (\bigtriangledown , 30 °C, (Chua et al., 2002)), type RD silica gel (△, 30 °C, (Chua et al., 2002), SDP (●, 30 °C), SDP (■, 40 °C), SDP (▲, 50 °C), SDP (▼, 60 °C).

CENTER FOR

ENVIRONMENTAL

GY ENGINEERING

https://doi.org/10.1016/j.ijrefrig.2012.07.009

Energy Efficiency and Heat Pumps Consortium

Experimental Setup

Schematics for polymer desiccant wheel testing system

(1) Fans; (2) Straightener; (3) Nozzles; (4) Differential pressure transducers; (5) Thermocouple grids; (6) Humidity sensors;
(7) Air mixers; (8) Electric heaters.

System Designed with ANSI/ASHRAE 41.2-1987 (RA 92), Standard Methods for Laboratory Airflow Measurement

Energy Efficiency and Heat Pumps Consortium

Experimental Setup (continued)

Overview of testing system (left); Data acquisition system (middle); Desiccant wheel assembly (right)

Energy Efficiency and Heat Pumps Consortium

Heat Pump Desiccant Unit

- Heating season:
 - Using only outdoor and return air moisture to humidify the indoors during the ventilation
 - Does not require additional water sources

Air-side:

Two fans (supply & exhaust) at the SA & EA outlets

Refrigerant-side:

One hermetic compressor, two heat exchangers covered with adsorption material (AHX), expansion valve, and a 4-way valve

Dimensions: 1300x1000x450 mm, Weight: 155 kg, Design air flow rate = 500 m³/h

Energy Efficiency and Heat Pumps Consortium

HPD Operations

HPD operates in cycle during the dehumidification mode

Energy Efficiency and Heat Pumps Consortium

HPD Operations

HPD operates in cycle during the humidification mode

Energy Efficiency and Heat Pumps Consortium

HPD Performance

Cooling & Dehumidification Mode

Heating & Humidification Mode

Energy Efficiency and Heat Pumps Consortium

HPD Performance

HPD Performance

Seasonal Comparison

77.7% of all OA humidity ratio data < 4.4 g/kg

78.2% of all RA humidity ratio data <u>> 4.4 g/kg</u>

85.8% of all RB humidity ratio data <u>> 4.4 g/kg</u>

OA: Outdoor air RA: Room A RB: Room B

Energy Efficiency and Heat Pumps Consortium

SSLC AC Design Overview

Vapor Compression Cycle

Desiccant Wheel

ENERGY ENGINEERING

Energy Efficiency and Heat Pumps Consortium

SSLC AC Components

High-efficient BLDC motor driven fan

Copper tubes at the back of RHX

Micro-channel condenser

80/20 Frame

Energy Efficiency and Heat Pumps Consortium

Copyright © 2023 Center for Environmental Energy Engineering

Fans

SSLC AC Design Overview

Radiative Heat Exchanger: Cooling Wall

Prototype AC Unit

Energy Efficiency and Heat Pumps Consortium

CENTER FOR ENVIRONMENTAL ENERGY ENGINEERING

SSLC AC Experimental Evaluation

IR Images of the RHX

Energy Efficiency and Heat Pumps Consortium

SSLC AC Test Results

Indoor air condition	26.7 °C/ 50% RH
Outdoor air condition	35.0 °C/ 44% RH

	Baseline Test	SSLC + RHX	SSLC + DW + RHX
Evaporating pressure (kPa)	951	1221	1091
Condensing Pressure* (kPa)	2481	2456	2310
Mass flow rate (g/s)	16.4	22.0	16.6
Cooling capacity (kW)	2.75	3.54	2.96
COP	2.91	4.15	3.8
COP improvement (%)	-	43	31

Energy Efficiency and Heat Pumps Consortium

Part 3 Conclusions

- Separate Sensible and Latent Cooling was realized using a radiative cooling wall and a polymer desiccant wheel using waste heat from the superheated condenser.
- Achieved 31% COP enhancement
- There are many potential system integration opportunities (VCC + Enhanced Dehumidification).

Energy Efficiency and Heat Pumps Consortium

ECD Prototype Development

Design MEA for ECD-Mechanism

Non-precious catalyst development: Dual active site design

Preparation of FeCoCN MOF_900°C

 $2\text{-methylimidazole+methanol} \rightarrow \text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O} + \text{Zn}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O} + \text{methanol} \rightarrow \text{Zn}\text{Co}\text{CN} \text{ MOF}$

ZnCoCN MOF+hexane+FeCl₃·6H₂O \rightarrow ZnCoFeCN MOF \rightarrow heat \rightarrow ZnCoFeCN MOF_900°C

Energy Efficiency and Heat Pumps Consortium

10.1021/jacs.7b10385

55

Task 3: EHDECD Prototype Development

Direction of water transfer:

- No. 1 to 9: anode to cathode (proton exchange membrane)
- No. 10 to 12: cathode to anode (alkaline exchange membrane)

Carrier gas: No. 1 to 9 \rightarrow air; No. 10 to 12 \rightarrow O₂ (we will test with air in the future)

Performance No. Summary

	Electric	AIr	nlet of A	node s	side	Air	inlet of Ca	tnode	side	Water	Dehumidification	
No.	Field (V)	m_a (g/s)	V_a (mL/min)	T(°C)	HR (g/kg)	m_a (g/s)	V_a (mL/min)	T(°C)	HR (g/kg)	removal (g/day/m²)	efficiency (g/(J⋅m²))	Reference
1	3	0.0324	1502	21.5	14.7	0.0324	1502	21.5	10.7	4,020	0.0225	[2]
2	3	0.0111	516	21.5	14.7	0.0111	516	21.5	10.7	2,539	0.0195	[2]
3	3	0.0270	1251	22.6	13.2	0.0270	1251	22.9	12.6	2,610	0.0150	[2]
4	3	0.0111	516	22.6	13.2	0.0111	516	22.9	12.6	1,975	0.0155	[2]
5	3	0.0323	1497	21.9	11.3	0.0323	1497	22.3	11.6	2,116	0.0140	[2]
6	3	0.0111	516	21.9	11.3	0.0111	516	22.3	11.6	1,622	0.0150	[2]
7	3	0.0163	755	19.5	13.4	0.0163	755	19.3	8.6	2,821	0.0190	[3]
8	3	0.0113	524	17.7	12.1	0.0113	524	17.4	8.0	2,328	0.0190	[3]
9	3	0.0054	250	16.6	11.3	0.0054	250	16.5	8.0	1,693	0.0155	[3]
10	3	0.0143	600	20	7.2	0.0143	600	20	8.7	9,700	0.0417	Our work
11	2	0.0143	600	20	7.2	0.0143	600	20	8.7	6,900	0.0307	Our work
12	2	0.0190	800	20	7.2	0.0190	800	20	8.5	9,300	0.0619	Our work

Energy Efficiency and Heat Pumps Consortium

Open-Air AEM ECD Results

- Experimental results for EHD-ECD performance under different use cases
- Examined effect of EC potential and EHD enhancement

For a 3-ton system, roughly 2 g/s dehumidification is required.

ECD-EHD Results

Moisture transfer rates under four electrode conditions and three different air-velocity conditions.

Energy Efficiency and Heat Pumps Consortium

Open-Air PEM ECD Results

Effect of EC Potential

Comparison of pure diffusion in the MEA (blue) and total transfer rate with 2 V applied potential (red). Nafion 115. 26°C and 50% RH upstream (cathode) humidity; **50% RH anode inlet** at 200 sccm.

Effect of EHD Enhancement

Comparison 2 V EC 0 kV EHD the MEA (blue) and transfer rate with **2 V EC 5 kV EHD** voltage (red). Same conditions.

Energy Efficiency and Heat Pumps Consortium

Task 8.1: Modeling EC Processes

• We formulated the modeling methodology for predicting the performance of an integrated EHD-ECD system.

EC membrane model. Coupled mass transfer solved for a finite grid spanning the length of the flow channel.

Energy Efficiency and Heat Pumps Consortium

Task 8.1: Solving ECD Element

Net water flux

$$N_w = \alpha \left(\frac{I}{2F}\right)$$

Change in water concentration

$$\frac{dx_i}{dz} = RT \sum_{j \neq i} \frac{x_i N_j - x_j N_i}{PD_{ij}}$$

Water Flux through the membrane

 $N_{w,elec} + N_{w,diff} = \alpha \left(\frac{I}{2}F\right) = \frac{I}{2F} - \frac{\rho_{dry}}{M_m} D_\lambda \frac{d\lambda}{dz}$

Cell voltage

$$V_{cell} = \eta_{act,an} + \eta_{act,an} + Ir$$

Flowchart of ECD Model

Energy Efficiency and Heat Pumps Consortium

Task 8.2: Model Results

Model results. Simulated and measured values of moisture removal for various conditions.

Model results. Simulated and measured values of faradaic efficiency for various conditions.

Energy Efficiency and Heat Pumps Consortium

Task 8.2: Closed-Cell Model Accuracy

Model accuracy. Comparison on simulated moisture removal to measured values.

Model accuracy. Comparison on simulated current to measured values.

Energy Efficiency and Heat Pumps Consortium

- ECD used in a ventilator, outdoor air, w/ ventilation, 20% of total air flow through ECD
 - State 1: supply air stream before ECD (35°C, 44%, 15.6 gw/kgda)
 - State 2: supply air stream after ECD (same as return air)
 - Return air stream before ECD (27°C, 50%, 11.1 gw/kgda)
 - Supply air stream, the flow rate through ECD: 240 CFM
 - Latent load by ECD: 2.5 kW
 - Water removal rate: 0.56 g_wv/s (0.23 g_wv/s/kW, or 4.4 g_wv/kg_da)

Energy Efficiency and Heat Pumps Consortium

- EHD used in a DOAS, w/ 100% ventilation, 100% of total air flow through ECD
 - State 1: supply air stream before ECDEHD (35°C, 44%, 15.6 gw/kgda)
 - State 2: supply air stream after ECDEHD (same as return air)
 - Return air stream before ECDEHD (27°C, 50%, 11.1 gw/kgda)
 - Supply air stream, flow rate through ECDEHD: 1200 CFM
 - Latent load by ECD: 12.4 kW
 - Water removal rate: 2.8 g_wv/s (0.23 g_wv/s/kW, or 4.4 g_wv/kg_da)

Main									
Sort	1 T _i [C]	2 P _i [kg/m3]	³ RH _i	⁴ ^ω i [kg/kg]	⁵ h _i [kJ/kg]	⁶ m _i [kg/s]	7 m _{d,i} [kg/s]	⁸ m _{w,i} [kg/s]	9 V _i [m3/s]
[1]	35	1.135	0.44	0.01558	75.13	0.6424	0.6325	0.009855	0.566
[2]	27		0.5	0.01115	55.54	0.6396	0.6325	0.00705	

Energy Efficiency and Heat Pumps Consortium

- ECD used after sensible evaporator, indoor air, w/o ventilation, 100% of total air flow through ECD
 - State 0: supply air stream before sensible evaporator (100% return air)
 - State 1: supply air stream before ECDEHD (100%, 11.1 gw/kgda)
 - State 2: supply air stream after ECDEHD (20°C, 8 gw/kgda)
 - Return air (27°C, 50%), Ambien air (35°C, 44%)
 - Supply air stream, flow rate through ECDEHD: 1200 CFM
 - Latent load by ECD: 2.3 kW; Sensible heat factor: 0.76
 - Water removal rate: 2.06 g_wv/s (0.88 g_wv/s/kW, or 3.1 g_wv/kgda)

11 11	Arrays Table							
Main								
<#> Sort	1 T _i	2 Ρ _i	3 rh _i	4 ω _i	5 h _i	⁶ m _i	7 m _{d,i}	8 m _{w,i}
	[C]	[kg/m3]		[kg/kg]	[kJ/kg]	[kg/s]	[kg/s]	[kg/s]
[0]	27		0.5	0.01115	55.54	0.6612	0.6539	0.007288
[1]	15.7		1	0.01115	43.96	0.6612	0.6539	0.007288
[2]	20	1.198	0.5502	0.008	40.38	0.6592	0.6539	0.005231

Energy Efficiency and Heat Pumps Consortium

- ECD used before the sensible evaporator, indoor air, w/o ventilation, 100% of total air flow through ECD
 - State 0: supply air stream before ECDEHD (100% return air)
 - State 1: supply air stream after ECDEHD (31°C, 8 gw/kgda)
 - State 2: supply air stream after the sensible evaporator (20°C, 8 gw/kgda)
 - Return air (27°C, 50%), Ambien air (35°C, 44%)
 - Supply air stream, flow rate through ECDEHD: 1200 CFM
 - Latent load by ECD: 2.6 kW; Sensible heat factor: 0.74
 - Water removal rate: 2.06 g_wv/s (0.80 g_wv/s/kW, or 3.1 g_wv/kgda)

Main								
Sort	1 T _i [C]	2 P _i [kg/m ³]	3 rh _i	4 ω _i [kg/kg]	⁵ h _i [kJ/kg]	⁶	⁷	⁸ m _{w,i} [kg/s]
[0]	27		0.5	0.01115	55.54	0.6612	0.6539	0.007288
[1]	31		0.2862	0.008	51.6	0.6592	0.6539	0.005231
[2]	20	1.198	0.5502	0.008	40.38	0.6592	0.6539	0.005231

Energy Efficiency and Heat Pumps Consortium

- ECD used before sensible evaporator, indoor air, w ventilation, 100% of total air flow through ECD
 - State 0: supply air stream before sensible evaporator (80% return air + 20% ambient air)
 - State 1: supply air stream before ECD (100%, 12.0 gw/kgda)
 - State 2: supply air stream after ECD (20°C, 8 gw/kgda)
 - Return air (27°C, 50%), Ambien air (35°C, 44%)
 - Supply air stream, flow rate through ECDEHD: 1200 CFM
 - Latent load by ECD: 4.5 kW; Sensible heat factor: 0.63
 - Water removal rate: 2.60 g_wv/s (0.58 g_wv/s/kW, or 4.0 g_wv/kgda)

Main								
Sort	1 T _i [C]	2 Pi [kg/m ³]	3 rh _i	4 ω _i [kg/kg]	⁵ h _i [kJ/kg]	⁶	7 m _{d,i} [kg/s]	⁸ m _{w,i} [kg/s]
[0]	28.57		0.491	0.01201	59.35	0.6575	0.6497	0.007801
[1]	16.85		1	0.01201	47.32	0.6575	0.6497	0.007801
[2]	20	1.198	0.5502	0.008	40.38	0.6549	0.6497	0.005197

Energy Efficiency and Heat Pumps Consortium

- ECD used before sensible evaporator, indoor air, w 20% ventilation, 100% of total air flow through ECD Return Air
 - State 0: supply air stream before ECDEHD (80% return air + 20% ambient air)
 - State 1: supply air stream after ECDEHD (32.57°C, 8 gw/kgda)
 - State 2: supply air stream after the sensible evaporator (20°C, 8 gw/kgda)
 - Return air (27°C, 50%), Ambien air (35°C, 44%)
 - Supply air stream, flow rate through ECDEHD: 1200 CFM
 - Latent load by ECD: 4.0 kW; Sensible heat factor: 0.68
 - Water removal rate: 2.60 g_wv/s (0.65 g_wv/s/kW, or 4.0 g_wv/kgda)

Main								
(H)	1	2	3	4	5	6	7	8
Sort	l _i	Ρi	rh _i	ω _i	h _i	m _i	m _{d,i}	m _{w,i}
	[C]	[kg/m ³]		[kg/kg]	[kJ/kg]	[kg/s]	[kg/s]	[kg/s]
[0]	28.57		0.491	0.01201	59.35	0.6575	0.6497	0.007801
[1]	32.57		0.2618	0.008	53.2	0.6549	0.6497	0.005197
[2]	20	1.198	0.5502	0.008	40.38	0.6549	0.6497	0.005197

Energy Efficiency and Heat Pumps Consortium

Copyright © 2023 Center for Environmental Energy Engineering

Reference

- 1. Alem-Rajabi, A. and F. Lai, "EHD-Enhanced Drying of Partially Wetted Glass Beads," Drying Technology, vol. 23, pp. 597-609, 2005.
- 2. Lai, F.C. and R. Sharma, "EHD-enhanced drying with multiple needle electrode," Journal of Electrostatics, vol. 63, pp. 223-237, 2005.
- 3. Poós, T. and Varju E. Mass transfer coefficient for water evaporation by theoretical and empirical correlations. International Journal of Heat and Mass Transfer vol. 158, 2020.
- 4. Qi, R., D. Li, H. Li, H. Wang and L.-Z. Zhang, "Heat and mass transfer in a polymeric electrolyte membrane-based electrochemical air dehumidification system: Model development and performance analysis," International Journal of Heat and Mass Transfer, vol. 126, pp. 888–898, 2018.
- 5. Qi, R., Tian, C., Shao, S., Tang, M. and Lu, L. Experimental investigation on performance improvement of electroosmotic regeneration for solid desiccant. Applied Energy vol. 88, pp. 2816-2823, 2011.

MEA Materials

MEA	Material	Cathode CL	Anode CL	Cathode GDL	Anode GDL
Open- Cathode (5 cm ²)	Nafion 115	Pt B (3 mg/cm ²)	IrRuOx (3 mg/cm ²)	Ti Frit	Ti Frit
PEM A (5 cm ²)	Nafion 115	Pt C (60%) (0.5 mg/cm ²)	IrOx (4 mg/cm ²)	Carbon Cloth	Ti Frit
PEM B (5 cm ²)	Nafion 115	Pt B (3 mg/cm ²)	IrRuOx (3 mg/cm ²)	Carbon Cloth	Ti Frit
AEM (5 cm²)	Fumasep	Pt C	RuO2	Carbon Cloth	Carbon Cloth
AEM (50 cm ²)	Fumasep	Pt C	RuO2	Carbon Cloth	Carbon Cloth

Energy Efficiency and Heat Pumps Consortium

ECD Modeling Methodology

	Anode GDL	Anode CL	Membrane	Cathode CL	Cathode GDL
H2 (<i>C_H</i>)	$-D_{Hv}\nabla C_H$	$-D_{Hv}\nabla C_H - \frac{1}{2F}i$	-	-	-
O2 (<i>C_O</i>)	-	-	-	$\sum_{\substack{j\neq i}}^{N} -D_{ij}\nabla C_j - \frac{1}{4F}i$	$\sum_{j\neq i}^{N} -D_{ij}\nabla C_j$
N2 (<i>C_N</i>)	-	-	-	$\sum_{\substack{j\neq i}}^{N} -D_{ij}\nabla C_j$	$\sum_{j\neq i}^{N} -D_{ij}\nabla C_j$
vH2O (<i>C_v</i>)	$-D_{Hv}\nabla C_v$	$-D_{Hv}\nabla C_v \\ -h_m(C_m-C_v)$	-	$\sum_{\substack{j\neq i\\ -h_m(C_m-C_v)}}^{N} -D_{ij} \nabla C_j$	$\sum_{j\neq i}^N -D_{ij}\nabla C_j$
mH2O (<i>C_m</i>)	-	$-D_m(\varepsilon_m)^{1.5}\nabla C_m + h_m(C_m - C_v)$	$\xi \frac{i_x}{F} - D_m \nabla C_m$	$\begin{vmatrix} -D_m(\varepsilon_m)^{1.5} \nabla C_m \\ + h_m(C_m - C_v) + \frac{1}{2F}i \end{vmatrix}$	-
$e^{-}(\Phi_s)$	$-\sigma_0 \varepsilon^{1.5} \nabla \Phi_s$	$-\sigma_0 \varepsilon^{1.5} \nabla \Phi_s + i$	-	$-\sigma_0 \varepsilon^{1.5} \nabla \Phi_s - i$	$-\sigma_0 \varepsilon^{1.5} \nabla \Phi_s$
$H^+(\Phi_m)$	-	$-\kappa(\varepsilon_{\rm m})^{1.5}\nabla\Phi_m + i$	$-\kappa \nabla \Phi_m$	$-\kappa(\varepsilon_{\rm m})^{1.5}\nabla\Phi_m-i$	-

Energy Efficiency and Heat Pumps Consortium

Introduction

Comparison of H₂O electrochemical dehumidifier and AEMFC

Energy Efficiency and Heat Pumps Consortium

Introduction

- Dehumidification using an electrochemical (EC) membrane
- Electrohydrodynamic (EHD) promotes mass transfer

73

Energy Efficiency and Heat Pumps Consortium

Task 3: EHDECD Prototype Development

5 cm² RPI membrane, cathode catalyst 1 mg_{Pt}/cm² (60wt.%Pt/40wt.%C), anode catalyst 1 mg_{IrO2}/cm², Ti endplate. Operation voltage 3 V. Anode in (11) dry oxygen flow rate 800 mL/min, cathode in (21) dry oxygen flow rate 800 mL/min. 20 °C.

Energy Efficiency and Heat Pumps Consortium

EHDECD Prototype Development

 Developed a new prototype for ECD with integrated EHD enhancement

Open-air ECD Prototype

Polycarbonate top plate with copper grounding plate (common ground for ECD and EHD).

Energy Efficiency and Heat Pumps Consortium

EHDECD Prototype Development

Steady-state water removal efficiency 2V applied potential (left) 3V applied potential (right) comparted with best available performance from similar experiment by Qi et al. (2019)

Energy Efficiency and Heat Pumps Consortium

Modeling of EC Processes

- Used numerical simulation to predict measured experimental data
- Model inputs:
 - Voltage
 - Inlet flow rates
 - Inlet pressures
 - Inlet relative humidities
- Compare simulated moisture removal rate and current to measured values

MEA Test Facility

Measure difference in RH before and after MEA. Placed heaters in cell hardware to test effect of temperature.

Energy Efficiency and Heat Pumps Consortium

Proposed System Modeling Approach

- Use experimental data and other modeling approaches to simulate:
 - EC dehumidifier
 - EHD enhancement
 - Sensible evaporator
- Combine system components
 using numerical model

Conveniently solve different system configurations

Proposed modeling approach: combine system components using independent sub-models validated by experimental data.

Energy Efficiency and Heat Pumps Consortium

SSLC System Configurations

Conf. 6: 20%V, ECDin MixA

CENTER FOR ENVIRONMENTAL ENERGY ENGINEERING

79

Energy Efficiency and Heat Pumps Consortium Copyright © 2023 Center for Environmental Energy Engineering

ECD Requirements

Configuration	Ventilation	Airflow Rate (CFM)	Cathode-side Inlet Temperature (°C)	Cathode-side Inlet Relative Humidity (%)	Cathode-side Inlet Humidity Ratio (g/kgda)	ECD Latent Load (kW)	Moisture Removal (g _w /s)
1	20%	240	35	44	0.01558	2.5	0.6
2	100%	1,200	35	44	0.01558	12.4	2.8
3	0%	1,200	15.7	100	0.01115	2.3	2.1
4	0%	1,200	27	50	0.01115	2.6	2.1
5	20%	1,200	16.9	100	0.01201	4.5	2.6
6	20%	1,200	28.6	49	0.01201	4.0	2.6

Anode-side inlet conditions: 27°C, 50% RH, 0.01115 g/kgda

Energy Efficiency and Heat Pumps Consortium

Sensible Evaporator Requirements

- System: ~ 1 ton
- Airflow: 400 CFM¹
- Ref. Mass Flow Range: 8~16 g/s²

Configuration ³	Evaporator Mode ⁴	Airflow Rate [CFM]	Air Inlet Temperature & Humidity⁵	Target Capacity ⁶ [kW]	Ref. Inlet Temperature & Quality ⁷	
1	\\/ot	400	27°C / 50%	3.0	10°C / 0 2	
2	vvet	400	21 0 1 30 /0	5.2	10 07 0.2	
2.5	Dry	400	27°C / < 20%	1.5	10°C, 14°C / 0.2	
3	Wet	400	27°C / 50%	2.5	10°C / 0.2	
4	Dry	400	32°C / < 20%	2.7	10°C, 14°C / 0.2	
5	Wet	400	29°C / 49%	2.6	10°C / 0.2	
6	Dry	400	34°C / < 20%	3.0	10°C, 14°C / 0.2	

1. Using standard 400 CFM/ton; can be adjusted for your coil capacity and test facility

- 2. A suggested range for capacity ranging from 1.5 to 3.2 kW; please finalize design flow rate based on simulations
- 3. All are corresponding to configurations in previous slides, 2.5 is a variation assuming dry inlet conditions can be achieved in configuration 1 and 2
- 4. Under some configurations, the inlet are still wet conditions (which means the sensible evaporator needs to take care of some latent load as well)
- 5. Inlet air conditions for dry tests is flexible on humidity as long as it is below 20%, per AHRI 210/240
- 6. This is the design capacity (variations are expected depending on real test and operating conditions)
- 7. A higher evaporation temperature (14°C) is used for dry tests to validate the benefits from SSLC (a higher evaporation temperature for sensible evaporator), according to Ling et al. (2011)

Energy Efficiency and Heat Pumps Consortium

Part 1 Conclusions

- Experimentally evaluated the ECD systems
- Scaled-up ECD Development with Commercial MEA Manufacturer
- Developed Component Models for the novel SSLC System
 - Formulated modeling methodology for closed-cell and opencathode EC dehumidifiers
 - Implemented EC dehumidifier models in MATLAB
 - Achieved reasonably good agreement between modeled and measured moisture removal rates and cell currents

