

Resilient Cooling of Buildings: Principles and System Examples

Ongun Berk Kazanci, PhD

Associate Professor in IEQ and HVAC Systems at Technical University of Denmark

Senior Building Physics Engineer at Buro Happold

Introduction

- We spend 90% of our lives indoors
- Indoor Environmental Quality (IEQ) is critical
- Buildings are built for people, not to save energy
- Comfort, health, and productivity should be achieved with the lowest possible energy use + renewables
- HVAC systems -> IEQ, energy, sustainability, and resilience
- Resilience to extreme events (future weather, heat waves, power outages, ...)

Resilience

14. August 2023

2nd DTU-UMD Workshop

Current Projects – IEA EBC

IEA-EBC

14. August 2023

International Energy Agency's **Energy in Buildings and Communities Programme**

https://www.iea-ebc.org/projects/ongoing

ANNEX 80 **Resilient Cooling of Buildings**

Status Website Ongoing (2018 - 2023) annex80.iea-ebc.org

ANNEX 87 **Energy and Indoor Environmental Quality** Performance of Personalised **Environmental Control Systems**

Status Website Ongoing (2021 - 2026) annex87.iea-ebc.org

Introduction to Resilience: IEA EBC Annex 80

- Goal: "to assess and communicate solutions of resilient cooling and overheating protection"
- Resilient cooling
 - Low energy and low carbon
 - Strengthen the ability of individuals and/or community to withstand and prevent impacts of disruptive events
- Focus on heatwaves and power outages
- Development of definitions, KPIs, future weather files (typical meteorological years and years with heat waves) and a dynamic simulation guideline

Qualitative assessment of resilient cooling strategies

Characteristics of Resilient Cooling

Absorptive Capacity	The ability to absorb the impact of disruptive events			
Adaptive Capacity	The ability to adjust to disruptions, especially in cases where the absorptive capacity is exceeded			
Restorative Capacity	The ability to return to the normal operation after a disruptive event			
Recovery Speed	The speed of the restorative process			

Zhang et al. (2021) Resilient cooling strategies – A critical review and qualitative assessment. Energy & Buildings.

5

Qualitative KPIs for resilient cooling

Energy & Buildings 251 (2021) 111312

	Contents lists available at ScienceDirect	and	
-21 (A)	Energy & Buildings		4
ISEVIER	journal homepage: www.elsevier.com/locate/enb	Stransford Strans	

Resilient cooling strategies – A critical review and qualitative assessment

Chen Zhang^{a,*}, Ongun Berk Kazanci^b, Ronnen Levinson^c, Per Heiselberg^a, Bjarne W. Olesen^b, ^{ueddes} Giacomo Chiesa^d, Behzad Sodagar^e, Zhengtao Ai^f, Stephen Selkowitz^c, Michele Zinzi^g, Ardeshir Mahdavi^h, Helene Teufl^h, Maria Kolokotroniⁱ, Agnese Salvatiⁱ, Emmanuel Bozonnet^j, Feryal Chtioui^j, Patrick Salagnac^j, Ramin Rahif^k, Shady Attia^k, Vincent Lemort¹, Essam Elnagar¹, Hilde Breesch^m, Abantika Sengupta^m, Liangzhu Leon Wangⁿ, Dahai Qi^o, Philipp Stern^p, Nari Yoon^{c,t}, Dragos-Ioan Bogatu^d, Ricardo Forgiarini Rupp^b, Taha Arghand^q, Saqib Javed^q, Jan Akander^r, Abolfazl Hayati^r, Mathias Cehlin^r, Sana Sayadi^r, Sadegh Forghani^r, Hui Zhang^s, Edward Arens^s, Guoqiang Zhang^f

^aDepartment of the Built Environment, Aalborg University, Denmark ^b International Centre for Indoor Environment and Energy - ICIEE, Department of Civil Engineering, Technical University of Denmark, Denmark ^c Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, USA ^d Department of Architecture and Design, Politecnico di Torino, Italy eSchool of Architecture and the Built Environment, University of Lincoln, UK ¹Department of Building Environment and Energy, Hunan University, China ⁸ ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Italy h Department of Building Physics and Building Ecology, TU Wien, Austria Institute for Energy Futures, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK ^jLaSIE, University of La Rochelle, France ^k Sustainable Building Design Lab, Dept. UEE, Faculty of Applied Sciences, Université de Liège, Belgium ¹Thermodynamics Laboratory, Aerospace and Mechanical Engineering Department, Faculty of Applied Sciences, Université de Liège, Belgium ^mBuilding Physics and Sustainable Design, Department of Civil Engineering, KU Leuven, Ghent and Aalst Technology Campuses, Belgium ⁿBuilding, Civil, and Environmental Engineering, Concordia University, Canada ^o Department of Civil and Building Engineering, Université de Sherbrooke, Canada PInstitute of Building Research & Innovation, Austria ^q Division of Building Services Engineering, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sweden ¹Faculty of Engineering and Sustainable Development, University of Gävle, Sweden ^s Center for the Built Environment, University of California, Berkeley, CA, USA ¹School of Civil, Environmental and Architectural Engineering, Korea University, Republic of Korea

ARTICLE INFO

ABSTRACT

Artide history: Received 2 February 2021 Revised 15 June 2021 Accepted 26 July 2021 Available online 29 July 2021	The global effects of climate change will increase the frequency and intensity of extreme events such as
	heatwaves and power outages, which have consequences for buildings and their cooling systems.
	Buildings and their cooling systems should be designed and operated to be resilient under such events
	to protect occupants from potentially dangerous indoor thermal conditions.
	This study performed a critical review on the state-of-the-art of cooling strategies, with special atten-
	tion to the in a sufferment of the heat second and second sectors. We approace of a definition of secility to a

https://doi.org/10.1016/j.enbuild.2021.111312

6

https://vbn.aau.dk/files/514931326/Dynamic_simulation_guideline_DCE_report_No.306.pdf

Radiant heating and cooling systems

2nd DTU-UMD Workshop

14. August 2023

Radiant heating and cooling systems

- Low temperature heating and high temperature cooling
- Heat emission or removal by radiation and convection (more than half by radiation) mostly water-based
- Three main types
 - radiant heating and cooling panels
 - pipes isolated from the main building structure (radiant surface systems)
 - pipes embedded in the main building structure (TABS)

Examples of a radiant ceiling panel (Source: Swegon)

Radiant heating and cooling systems

- Floor, walls and ceiling can be used; large surface area for heat exchange
- Supply water temperatures
 - Heating: 25 35° C
 - Cooling: 16 23° C

Resilience benefits of radiant cooling

- Radiant cooling, by activation of thermal mass
 - Possibility to absorb heat gains over a longer period (also pre-cooling)
 - Integration of renewable energy resources
 - Transferring peak loads to off-peak hours, and peak load reductions (peak shaving and peak shifting)
 - Possibility of intermittent operation to help the grid

Thermal Comfort – a simulation study

Room width = 3.6 m, window portion of the external wall = 30%

Construction	Heavyweight & Lightweight			
Location	Copenhagen, Denmark			
Floor Area	Office: 19.8 m² (5.5 x 3.6 m) each Corridor: 8.6 m² (2.4 x 3.6 m)			
Systems	Packaged Terminal Air Conditioner (PTAC) Thermally Active Building System (TABS); 24 h & Intermittent operation			
Scenarios	Heatwaves, with/without power outages			

Li et al., 2015; Olesen and Dossi, 2004; Kazanci et al., 2022

Maintaining comfort conditions

Scenario: Power outage during the whole duration of a heatwave

Note: ISO 17772-1 (2017) Temp. range for cooling season Category II: 23.0 – 26.0 °C Category III: 22.0 – 27.0 °C Category IV: 21.0 – 28.0 °C

Recovering to comfort conditions

Scenario: Power outage during the whole duration of a heatwave

Note: ISO 17772-1 (2017) Temp. range for cooling season Category II: 23.0 – 26.0 °C Category III: 22.0 – 27.0 °C Category IV: 21.0 – 28.0 °C

From addressing a group of people to individuals

Introduction

- Personalized environmental control systems (PECS)
- PECS intend to condition the immediate surroundings of the occupants, creating a "personalized" space
- Provide individual control over indoor environmental quality (IEQ) factors
 - Heating / Cooling
 - Ventilation
 - Lighting
 - Acoustics
- Personalized control (user-controlled, automatic control)

Personalized Environmental Control Systems (PECS)

PECS Studies (1979)

• Madsen and Saxhof

An unconventional method for reduction of the energy consumption for

heating of buildings

Fig. 6. Principle shetch for a heated chair. Each of the four elements can be controlled separately to a wanted effect.

- 1. heating element in seat.
- 2. heating element in back
- 3. radiation heating element behind the back
- 4. radiation heating element for legs and feet

PECS Examples

https://www.daidan.co.jp/sustainability/pdf/2020/daidan_report2020_all_eng.pdf

http://abee.or.jp/designaward/past/16/docs/06.pdf

https://www.coolingpost.com/newsheadlines/fujitsu-develops-personal-cooler/

Melikov 2016

Bivolarova et al., 2017

Resilience benefits of PECS

- PECS, by creating a personalized/localized space
 - Temperature setpoint relaxation
 - Higher room temperatures are acceptable
 - Personalized spaces can be occupied longer, and sooner after the heat wave or power outage
 - Wearables can provide extended benefits outdoors and transition spaces

Thermal Comfort – a simulation study

Room width = 3.6 m, window portion of the external wall = 30%

Construction	Heavyweight &	Lightweight
--------------	---------------	-------------

- Location Copenhagen, Denmark
- Floor Area Office: $19.8 \text{ m}^2 (5.5 \text{ x} 3.6 \text{ m})$ each Corridor: $8.6 \text{ m}^2 (2.4 \text{ x} 3.6 \text{ m})$
- Systems Packaged Terminal Air Conditioner (PTAC) Thermally Active Building System (TABS); 24 h & Intermittent operation

Scenarios Heatwaves, with/without power outages

Simplified evaluation of PECS by altered comfort limits:

- Veselý and Zeiler (2014): up to 30 °C
- He et al. (2017): up to 32 °C
- ISO 17772-1:2017
 Table H.4 Indoor operative temperature correction applicable for buildings equipped with fans or personal systems providing building occupants with personal control over air speed at occupant level

Average air speed [m/s]	Operative temperature correction [°C]		
0.6	1.2		
0.9	1.8		
1.2	2.2		

Li et al., 2015; Olesen and Dossi, 2004; Kazanci et al., 2022

Resilience benefits of PECS

- Extended temperature ranges for PECS (based on standards and literature)
- Hours below baseline temperature at the beginning of heatwave/power outage and hours until baseline after heatwave/power outage

Baseline	Hours maintained below		Hours until baseline			
Temperature (°C)	baseline temperature (h)		temperature is reached (h)			
26	0 -	16		27 -	126	
27	12 -	- 19		25 -	- 117	
28	14 -	- 40		24 -	- 108	
29	15 -	- 42		23 -	106	
30	17 -	- 64		21	- 64	

Concluding remarks

14. August 2023

2nd DTU-UMD Workshop

Concluding remarks

- Buildings are built for people -> always focus on people
- Resilience future-proofing: New criteria to be integrated into the design and operation
- Radiant systems and PECS have several benefits compared to traditional systems
- They are also resilient solutions during heat waves and power outages
- Need to develop an approach for considering building, systems, and occupants simultaneously
- Future: building-attached -> building-detached -> occupant-attached

Thank you for your attention

Ongun Berk Kazanci, PhD <u>onka@dtu.dk</u> <u>ongun.kazanci@burohappold.com</u>