Acoustofluidics: ultrasound manipulation of biomolecules and cells in microfluidic systems

FTP research project, grant no. 274-09-0342
Period: 01.09.2009 - 31.12.2012. External funding: 2.6 MDKK
PI: Prof. Henrik Bruus
PhD student: Rune Barnkob
 
About the project
Acoustofluidics, the ultrasound-based manipulation of biomolecules and cells in microfluidic systems, is an emerging technology with a huge potential for label-free, high throughput diagnostics tools in biology and medicine. A particular problem for the further development of many practical devices is the ill-characterized forces from the acoustic streaming in the carrier liquid interfering with the well-understood acoustic pressure or radiation forces.
     The focus of the project is (i) to incorporate the forces of acoustic streaming in the governing equations, (ii) to implement the improved governing equations in a versatile numeric code written in COMSOL, (iii) to validate the numerical simulation against experiments carried out by our collaborators at Lund University on specific test devices, and (iv) to design an acoustophoretic separator for blood components to be fabricated and tested by our collaborators at UC Santa Barbara. Device applications will be analyzed in a combined theoretical and experimental study. The project will contribute significantly to the development of a whole new type of versatile separation devices allowing for unprecedented, high throughput, label-free separation of bioparticles. 
 
Collaborators during the project
Prof. Thomas Laurell , Lund University (Sweden)
Prof. Tom Soh, UC Santa Barbara (US)
Prof. Steven T. Werely, Purdue University (US)
Prof. Christian J. Kähler, Universität der Bundeswher, München (Germany)
Assoc.Prof. Martin Wiklund, KTH Royal Institute of Technology, Stockholm (Sweden)
 
PhD thesis supported by the grant
Physics of microparticle acoustophoresis
- bridging theory and experiment

Rune Barnkob (now postdoc at TU München)
(August 2012, 214 pages, pdf)
 
Peer-reviewed papers supported by the grant (13)
Tunable-angle wedge transducer for improved
acoustophoretic control in a microfluidic chip

I. Iranmanesh, R. Barnkob, H. Bruus, and M. Wiklund 
J. Micromech. Microeng. 23, 105002 1-10 (2013). (pdf)
 
Ultrasound-induced acoustophoretic motion of microparticles in three dimensions
P.B. Muller, M. Rossi, A. G. Marin, R. Barnkob,
P. Augustsson, T. Laurell, C. J. Kähler, and H. Bruus
Ultrasound-induced acoustophoretic motion of microparticles in three dimensions
Phys. Rev. E 88, 023006 1-12 (2013). (pdf)
 
Acoustic radiation- and streaming-induced microparticle velocities
determined by micro-PIV in an ultrasound symmetry plane

R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus
Phys. Rev. E 86, 056307 1-11 (2012). (pdf)
 
A numerical study of microparticle acoustophoresis driven by
acoustic radiation forces and streaming-induced drag forces

P.B. Muller, R. Barnkob, M.J.H. Jensen, and H. Bruus
Lab Chip 12, 4617-4627 (2012). (pdf)
 
High-throughput temperature-controlled microchannel
acoustophoresis device made with rapid prototyping

J.D. Adams, C.L. Ebbesen, R. Barnkob, A.H.J. Yang, H.T. Soh, and H. Bruus
J Micromech Microeng 22, 075017 (2012). (pdf)
 
Measuring acoustic energy density in microchannel acoustophoresis
using a simple and rapid light-intensity method

R. Barnkob, I. Iranmanesh, M. Wiklund, and H. Bruus.
Lab Chip 12, 2337-2344 (2012). (pdf)
 
Forces acting on a small particle in an acoustical field in a viscous fluid
M. Settnes and H. Bruus
Phys. Rev. E 85, 016327 1-12 (2012). (pdf)
 
Automated and temperature-controlled micro-PIV measurements
enabling
long-term-stable microchannel acoustophoresis characterization
 
P. Augustsson, R. Barnkob, S.T. Wereley, H. Bruus, and T. Laurell
Lab Chip 11, 4152–4164 (2011). (pdf)
 
Measuring the local pressure amplitude in microchannel acoustophoresis
R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus
Lab Chip 10, 563-570 (2010) (pdf)
 
Acoustofluidics 1: Governing equations in microfluidics
H. Bruus
Lab Chip 11, 3742-3751 (2011). (pdf
 
Acoustofluidics 2: Perturbation theory and ultrasound resonance modes
H. Bruus
Lab Chip 12, 20-28 (2012). (pdf)
 
Acoustofluidics 7: The acoustic radiation force on small particles
H. Bruus.
Lab Chip 12, 1014-1021 (2012). (pdf)
 
Acoustofluidics 10: Scaling laws in acoustophoresis
H. Bruus
Lab Chip 12, 1578-1586 (2012). (pdf)
https://www.staff.dtu.dk/bruus/externalfunding/ftpacoustofluidics
16 APRIL 2024